- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Blay, Jeffrey (2)
-
Hashemi-Beni, Leila (2)
-
Anokye, Matilda (1)
-
Dorton, Jennifer (1)
-
Fawakherji, Mulham (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Blay, Jeffrey; Hashemi-Beni, Leila (, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences)Abstract. Floods are among the most destructive natural disasters, posing significant risks to human lives and property. This study investigates the impact of Hurricane Matthew on built assets in Greenville, North Carolina, USA in 2016 using an integrated approach that combined floodwater extent mapping, depth estimation, and impact assessment. In particular, our objective is to accurately map and estimate floodwater depth using deep learning techniques combined with aerial imagery and lidar data to assess the extent of flooding’s impact on critical infrastructure such as buildings and roads. The pretrained UNET model utilized, achieved high accuracy in mapping flood extent, with a 93% accuracy, while floodwater depth estimates yielded a root mean square error (RMSE) of 0.75, reflecting a deviation of approximately 1ft from field measurements. The results highlighted the severe damage sustained by essential assets, notably Greenville Airport, which experienced significant flooding and disruption. The research results revealed that approximately 32% (415 acres) of developed land, 26% (185) of buildings, and 66% (23 miles) of roads were affected. These findings provide critical insights that can guide policymakers in crafting effective mitigation and adaptation strategies to protect urban areas and essential infrastructure.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
